Integrating The Digital Microscope Into Clinical Practice

Stephen M. Hewitt, MD, PhD
TARP/AMPL, LP, CCR, NCI, NIH
Disclosure

• “Employee” Of The US Federal Government
• Chairman, Research Committee Association for Pathology Informatics
• Consultant, Hematology & Pathology Devices Panel, Center For Devise & Radiological Health, Food & Drug Administration
• Clinical and Laboratory Standards Institute
 – Member, Consensus Committee On Immunology and Ligand Assays
 – Former Co-Chairman, Subcommittee On Quality Assurance For Immunohistochemical Procedures
Diagnostic Histopathology

• Rendering A Diagnosis
 – Gross Examination
 – Microscopic Examination

• “Diagnosis”
 – Identification Of The Disease Entity

• “Prognosis”
 – Additional Information That Guides Therapy
Making A Histopathology Diagnosis

• Intellectual
 – Cognition
 – Fund Of Knowledge

• Visual
 – Human Factors
 • What Is The Impact Of The Environment On The Pathologist To Appreciate All The Factors Involved in A Complete Diagnosis
 – Image Factors
 • Is The Digital Image Equal To The Diagnostic Microscope Image

• Workflow
 – Can The Pathologist Perform The Task Without Negative Impact To Productivity?
Basic Principle Of A Microscope

Figure 5

Figure 6

Virtual Image

Sample Holder

Sample Translator

Focus Knob

Lens

Simple Magnifying Lens

Object

Retina
Unique Experiences Of Microscopes & Telescopes

- A Virtual Image Is Perceived
- Quality Of Image Is Defined By Optics
- Illumination Is A Unique Feature Of Microscopes
 - Optics Of Illumination Path
 - Light Source
 - Visualization Into A Light Source

- Immersive Environment
Ansel Adams
Cameras
Photography

- Large Format- Film
 - Image Visualized On Ground Glass
 - Composition
 - Focus
 - Complete Control Of Image Parameters
 - WYSIWYG
 - Minimal Or No Enlargement

- Digital – Point & Shoot
 - Image Displayed On A Miniature Screen
 - “Snapshot”
 - Autofocus
 - No Control Of Image Parameters
 - Viewing Environment Variable
 - TV, Digital Frame, Computer Screen
Microscope / Imaging Device
Microscopy

- Optical Microscope
 - Immersive Viewing Environment
 - Surroundings Obscured
 - Fixed Gaze
 - Controls Do Not Require Averting Gaze
 - User Controlled Image
 - “Composition”
 - User Control Of Illumination & Focus

- Digital Microscope
 - Viewing A Screen
 - Surrounding Environment
 - Ocular Activity
 - Visualize Controls
 - Predefined Image
 - Fixed Image
 - Fixed Focus
 - Limited Control Of Illumination
Pathology & Radiology

Very Different

– Observation
 • Of The Object Vs Image Of An Object

– Approaches
 • Sampling Of The Object Vs Multiple Image Of The Object

– Language
 • Look, Review, Examine Vs Read

Collision Course

– Spectroscopy
– *In Vivo* Microscopy (IVM)
Does Imaging In Cervical Cytology Provide A Framework Forward?

<table>
<thead>
<tr>
<th>Diagnostic Pathology</th>
<th>Cervical Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Multiple Organs</td>
<td>• Cervical Smear Only</td>
</tr>
<tr>
<td>• Multiple Diagnostic Axis</td>
<td>• Limited Diagnosis</td>
</tr>
<tr>
<td>• Histomorphology</td>
<td>– Malignant Axis</td>
</tr>
<tr>
<td>• Histochemistry</td>
<td>– Infectious Axis</td>
</tr>
<tr>
<td>• Immunohistochemistry</td>
<td>– Other</td>
</tr>
<tr>
<td></td>
<td>• Reflex To Microscope</td>
</tr>
<tr>
<td></td>
<td>• Cytomorphology</td>
</tr>
</tbody>
</table>
Quality Is Everything

Quality Remains Subjective

• Tissue Quality
 – Fixation & Processing
 – Sectioning & Staining
 – Coverslipping

• Image Quality
 – Instrument
 – Software
 – Viewing Environment
A Picture Is Worth A 1000 Words

• Must Define What Is Being Observed
• Must Have A Schema Of What Information Is To Be Obtained
• Fit-For-Purpose Model
• Intended Use
 – Microscopic Examination As A Diagnostic Process

Similar Concept
Different Approach
Ends-Means-Goals
Philosophical Model Of Scientific Process
Original Purpose, Intermediate Use, Final Role

Fit-For-Purpose
Diagnostic Paradigm
Matching The Process To The Test

Intended Use
Regulatory Concept
Goal The Object Is Intended To Accomplish
Digital Microscopy

• Ends-Means-Goals
 – Ends: Digital Microscope Image
 – Means: Enablement Of High-Throughput Imaging, Image Analysis & Image Databases
 – Goals: Digital Diagnostic Pathology

• Fit-For-Purpose
 – Design Of A System To Replicate Manual Microscopy

• Intended Use
 – Development Of An Imaging System Capable Of Allowing A Pathologist To Generate A Diagnosis Equal To Manual Microscopy
Byproducts Of Imaging

• Telepathology
 – Consultative
 – After-hours/Remote Diagnosis

• Electronic Archives
 – Panel Review
 • Classification Consensus
 – Teaching
 – Meta-Analysis
Unique Issues In Evaluation Of Digital Diagnostic Microscopy

- Clinical Use
 - Every User Is A Unique Beast

- Antecedent Status Of Microscope
 - FDA Has No Oversight Over The Diagnostic Microscope
 - Evolution Of Microscopes
 - Diversity Of Microscopes In Clinical Use

- Lack Of Calibrators
 - Objects
 - Contrast Agents

- Metrics Of Equivalence
 - Diagnosis Is Not Based On Examination Of A Single Image
 - Multiple Sections/Images
 - Adjunctive Stains
Breaking Down An Image Into Information

Recognition Interpretation Qualification
Histopathology

• Histomorphology
 – What Cells?

• Cytomorphology
 – Where In The Cell?

• Immunomorphology
 – Where Are Specific Proteins?
“Stains”

- **Contrast Agents**
 - Binding Based On A Chemical Reaction/Property
 - Direct Deposition
- **Immuno-recognition**
 - Antibody Binds Epitope
 - Antibody Is Detected By Means Of A Label

- **Stains**
 - Absorption Of Color
 - Obey Beer-Lambert Law
 - Concentration Correlates With Absorption
- **Light Scattering**
 - DAB
 - Silver Impregnations
Pathologic “Diagnosis”

- **Diagnosis**
 - Definition Of A Tissue-based Disease Process
 - Presence/Localization Of Disease Process
- **Decision Making (Prognosis/Prediction)**
 - Correlation Of A Finding With Action/Response
 - Cyto-/Histo- Morphology
 - Immunohistochemistry
Diagnostic Microscopy

• “You Either Know It, Or You Don’t, The Image Won’t Make A Difference”
 – Given An Adequate Image, Modality Does Not Matter

• “May I Have The Slides Please, I Would Like To Study This”
 – The Experience Of Using A Microscope Is Essential For Reaching A Diagnosis
 – Unperceivable Elements Of Microscopy Are Important For Some Diagnosis
Diagnosis

- The Constellation Of Histomorphology & Cytomorphology Based On Pattern Recognition
- The Human Eye & Mind Are Terrifyingly Accurately Fast Accurate & Fast
- Immunohistochemistry Improves Discrimination Or Provides Verification Of The Findings
“Decision Making” Microscopy

• Is It Malignant?
 – What Tumor Is It?

• How Bad Is It?
 – What Is Its Molecular Phenotype?

• What Is The Status Of The Margins?

• Is There:
 – Lymphovascular Invasion?
 – Lymph Node Metastasis?
Prognosis & Prediction Of Response

• Histopathology
 – Interpretation Of The Histomorphology & Cytomorphology To Predict Behavior
 • Well, Moderately, Poorly Differentiated
 • Sarcomatoid Features
 – Correlation With P53 Mutations In Wilms Tumor

• Immunopathology
 – Calibrated Molecular Assay
 – Quantified Presence Of A Molecule Correlated With An Outcome
When Is Good, Good Enough?
Validation Of Digital Diagnostic Pathology

• 95% Concordance
 – 1 in 20 Error
• 99% Concordance
 – 1 in 100 Error
• Can This Be Weighted For Different Kinds Of Diagnosis?
 – Maligant
 – Rare

• Suggested Approaches:
 – By Stain
 – By Organ System
 – By Disease Process

• Potential Advancements:
 – 40X Imaging
 – Z-stack Imaging
When Is Good, Good Enough?
Validation Of Digital Diagnostic Pathology

• You Either Know It Or You Don’t
• What Are The Dark-spaces Of Microscopy - Where It Matters?
 – Lymphocytes
 – Cytology
 – Liver
 • Feathery Degeneration Of Hepatocytes
 – Kidney
 • Isovolumetric Vacuolization
Is A Digital Image Equal To An Image Observed By A Human At The Microscope?

• Focus
• Illumination Control
 – Fixed Vs Variable Illumination
• Condenser Control
 – DAB & Silver Stains Scatter Light
 – Stains Absorb Light (Beer’s Law)
 – Kohler Illumination Generates A Higher Contrast Image Than Critical Illumination
Fit-For-Purpose Approach To Qualifying Digital Diagnostic Microscopy

• Approximation To:
 – Existing “Pre-Analytic” Elements
 • Slide & Stain
 – Existing “User-Defined” Elements
 • Focus & Illumination

• Software Solutions
 – Color & Illumination Control

• Hardware Solutions
 – Focus
 – Absorption Vs Scattering
Intended Use Approach To Qualifying Digital Diagnostic Microscopy

• Safety & Efficacy

• Can The Pathologist Obtain The Full Range Of Diagnosis For The Specimen
 – Essentially Impossible To Define
 – Restriction Disrupts Practice
 – Broad Validation Is Functionally Required
Total Test & Digital Diagnostic Pathology

• Who Defines The Specifications Of What Is Imaged?
 – Pathologist / Lab Director
 • Instrument Must Be Able To Image A Broad Spectrum Of Slide Features & Staining Conditions
 – How Would This Spectrum Of Conditions Be Defined & Tested?
 – Manufacturer Of Imaging System
 • Pathologist Must Be Able To Interpret Slides & Stains Prepared To The Specification Of The Manufacturer

• Must Samples Be Sufficient For Both Manual & Digital Microscopic Interpretation?
Safety In The Context Of Diagnostic Test

Diagnostic Efficacy

- Is The Treatment Of Patients Impacted By The Use Of This Test?
 - Is The Result Equal, Better Or Worse?

- “Diagnostic Drift”
 - Does A Change In *Technology* Have Long Term Consequences In The Quality Of Care?
Extending The Diagnostic Experience

Adding Tools To Microscopic Interpretation

• Special Skills
 – Pattern Recognition
 – Data Integration

• Over-rated Skills
 – Quantification Of Immunopathology

• Desired Improvements
 – Rare Event Detection
 – Tools To Ensure Entirety Of Material Is Reviewed
Computer-aided Image Analysis

- Histomorphology
 - Toxicology
- Cytomorphology
 - Cervical Cytology
- Immunohistochemistry
 - Quantification
 - Counting
 - Intensity
Digital Imaging Moving Forward

• Challenges
 – Training & Education
 – Technology Standardization/Calibration

• Promises
 – An Integrated Computerized Diagnostic Platform
 – Imaging Tools To Identify/Quantify/Classify

• Unknown
 – Action By The FDA
 – Retention Of Digital Images As Diagnostic Medium
 – Infrastructure
A Picture Is Worth A 1000 Words

• Today - Application Of A Fit-For-Purpose Approach
 – Digital Pathology Replicates The Manual Microscope

• Tomorrow – Intended Use Approach
 – Digital Pathology Adds Tools For Diagnosis, Prognosis, Prediction Of Response
How Does Digital Imaging Become Economically Viable?

• Cost Drops
 – Can Not Drop Sufficiently
 – Add-On Technology

• Economies Of Scale
 – Makes The Pathologist More Productive

• Regulatory Guidance/Imperative
 – Requires Changes To Reimbursement Model

• Revenue Generating
 – Demonstrates A Benefit To Patient Care
Conclusions

• Digital Pathology Is Not About Replicating The Microscope Experience, But Achieving An Equal Or Greater Diagnostic Benefit
 – Current Technology Does Not Replicate The Microscope
 • Numerous Features Can Be Enabled In The Digital Workflow To Provide Visualization Not Currently Feasible
 – Total Test Paradigm Would Enable Optimized “Staining” Approaches To Access The Diagnostic Features
 • May Prevent These Slides From Being Reviewed Outside Of Digital Imaging / Different Platforms
Conclusions

• Equivalency Will Be Measured At The Diagnostic Level, Not The Histologic Level
 – Diagnosis Is Based In Pattern
 • Assisted Pattern / Event Detection
 – Quantification Is-
 • Easily Matched By Non-Pathologist
 • Easily Exceeded By Software
Final Thoughts

• Current Digital Image Technology Is Not Equivalent To A Microscope At This Time

• Defining Diagnostic Equivalency Is Challenging

• Opportunity For CAD In This Space

• Introduction Of Reflex Manual Microscopy Based On Predefined Metric
Acknowledgements

Tissue Array Research Program & Applied Molecular Pathology Laboratory

- Joon-Yong Chung
- Kris Ylaya
- Jennifer Martinez
- Catherine Conway
- Haru Kitano
- Candice Perry
- Victoria Burton
 - Kimberly Tuttle
 - Yvonne Gathright
 - Langston Lim
 - Till Braunschweig
 - Mikiko Takikita
 - Petra Lenz
 - Kant Matsuda
 - Ran Xie
 - Reginald Williams

- Center For Cancer Research
- Division Of Cancer Epidemiology & Genetics
- Office Of Biospecimens & Biorepository Research
- Clinical Proteomics Program
- Division Of Cancer Therapeutics & Control
- SEER Program
- Developmental Therapeutics Program
- Cancer Therapeutic Evaluation Program
- Comparative Oncology Program

genejock@helix.nih.gov